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CONSPECTUS: Zeolites are microporous crystalline materi-
als with well-defined cavities and pores, which can be prepared
under different pore topologies and chemical compositions.
Their preparation is typically defined by multiple intercon-
nected variables (e.g., reagent sources, molar ratios, aging
treatments, reaction time and temperature, among others),
but unfortunately their distinctive influence, particularly on
the nucleation and crystallization processes, is still far from
being understood. Thus, the discovery and/or optimization of
specific zeolites is closely related to the exploration of the
parametric space through trial-and-error methods, generally
by studying the influence of each parameter individually.
In the past decade, machine learning (ML) methods have
rapidly evolved to address complex problems involving highly nonlinear or massively combinatorial processes that conventional
approaches cannot solve. Considering the vast and interconnected multiparametric space in zeolite synthesis, coupled with our
poor understanding of the mechanisms involved in their nucleation and crystallization, the use of ML is especially timely for
improving zeolite synthesis. Indeed, the complex space of zeolite synthesis requires drawing inferences from incomplete and
imperfect information, for which ML methods are very well-suited to replace the intuition-based approaches traditionally used
to guide experimentation.
In this Account, we contend that both existing and new ML approaches can provide the “missing link” needed to complete the
traditional zeolite synthesis workflow used in our quest to rationalize zeolite synthesis. Within this context, we have made
important efforts on developing ML tools in different critical areas, such as (1) data-mining tools to process the large amount of
data generated using high-throughput platforms; (2) novel complex algorithms to predict the formation of energetically stable
hypothetical zeolites and guide the synthesis of new zeolite structures; (3) new “ab initio” organic structure directing agent
predictions to direct the synthesis of hypothetical or known zeolites; (4) an automated tool for nonsupervised data extraction
and classification from published research articles.
ML has already revolutionized many areas in materials science by enhancing our ability to map intricate behavior to process
variables, especially in the absence of well-understood mechanisms. Undoubtedly, ML is a burgeoning field with many future
opportunities for further breakthroughs to advance the design of molecular sieves. For this reason, this Account includes an
outlook of future research directions based on current challenges and opportunities. We envision this Account will become a
hallmark reference for both well-established and new researchers in the field of zeolite synthesis.

1. INTRODUCTION

Designing crystalline materials with tailored physicochemical
properties is critical to industries spanning chemicals and
petroleum to pharmaceuticals and electronics. Zeolites are
crystalline, microporous aluminosilicates with well-defined
cavities and pore topologies of molecular dimensions that
directly impact the global economy with their ubiquitous use in
many large-scale catalytic and absorption processes. Few
crystalline materials exhibit the level of synthetic complexity
encountered in the preparation of zeolites, where multiple
parameters (i.e., reagent sources, molar ratios, aging treatments,
reaction time and temperature, amongmany others) can be used
to alter the outcome.1 The objective of selecting the appropriate

synthesis conditions is to arrive at a crystal structure that has the
desired physicochemical properties, but this point is very
difficult because zeolite crystallization is not well understood.
Zeolite crystallization is an interfacial phenomenon where the
nucleation and crystallization of solute molecules is mediated by
interactions with structure directing agents (SDAs), mainly
organic and inorganic cations, that vary both in size and
composition. In general, zeolites require the use of organic SDAs
(OSDAs), which typically are amines and ammonium cations,
featuring sizes and shapes commensurate with the geometry of
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porous channels/cages, to direct pore formation.2,3 However,
today, most zeolite discovery efforts continue to be based on
trial-and-error approaches with minimal control over the
resulting structures.1,2

Recent advances in artificial intelligence (AI) coupled with
increased accessibility to large data sets have allowed the
development of new algorithms and statistical methods capable
of extracting relationships between variables in multidimen-
sional systems.4 In particular, the use of machine learning (ML),
a subfield of AI that relies on complex mathematical models that
can effectively “learn” from past data to find complex patterns
embedded within large data sets, in materials science has
revolutionized our ability to map intricate behavior to process
variables, especially in the absence of well-understood
mechanisms. Considering the vast and interconnected multi-
parametric space in zeolite synthesis, our poor understanding of
the control of mechanisms involved in their nucleation/
crystallization, and the large amount of empirical data existing
in the field, the use of ML is especially timely for improving
zeolite synthesis. We expect these advances will have a dramatic
impact on predicting hypothetical and known zeolites, as well as
their synthesis conditions, undoubtedly accelerating the
discovery of target microporous materials and ultimately
improving our fundamental understanding.
To accomplish this goal, we must incorporate both existing

and new ML approaches within the “traditional” zeolite
synthesis workflow featuring well-established high-throughput
synthesis/characterization devices and data-mining software
(see Figure 1). We contend that ML will have a pivotal role in
extracting, classifying, and interconnecting information across

four critical research areas, namely, (i) high-throughput
synthesis efforts, (ii) design of feasible hypothetical zeolites,
(iii) “in silico” prediction of OSDAs for target zeolites, and (iv)
automated, nonsupervised data extraction from published
literature. We note that most ML algorithms require “learning”
from existing data sets to improve their accuracy, thus requiring
effective methods to generate, organize, extract, and utilize
existing and new information from computational and
experimental outputs.
In this Account, we present, within the context of concurrent

efforts by many other research groups, the main tools developed
by our group at the ITQ that have helped advance each of the
above-mentioned research areas. First, we describe data-mining
tools developed to process the large amount of data generated at
the advent of high-throughput infrastructure. Next, we describe
the development of complex algorithms to predict the formation
of energetically stable hypothetical zeolites, the “ab initio”
OSDA predictions to direct the synthesis of hypothetical or
known zeolites, and, finally, the nonsupervised data extraction
and classification from literature. We conclude with an outlook
of future research directions based on current challenges and
opportunities.

2. “HIGH-THROUGHPUT” PLATFORMS FOR ZEOLITE
SYNTHESIS

In the late 1990s, the empirical data acquisition process for
zeolite synthesis was greatly accelerated with the implementa-
tion of “high-throughput” (HT) synthesis methods.5−7 These
HT systems featured robotic multireactor systems operating
under the tenets of automation, parallelization, and miniatur-
ization that could explore many synthetic parameters automati-
cally with drastic reductions in cost and time.8 Unlike those used
in the pharmaceutical industry, HT reactors for zeolite synthesis
needed to be re-engineered to (i) handle harsher temperature
(∼150−200 °C), pressure (∼1.5 MPa), and alkaline conditions,
(ii) dispense both liquid and solids of varying physicochemical
properties, and (iii) be compatible with automated and
parallelized characterization techniques using microgram scale
solids. The use of these HT devices fast-tracked the discovery of
some novel zeolitic materials.9,10 The fast rates and large
amounts of data generated in these systems required the
development of “data-mining” methods for rapid and
unsupervised analyses (see Figure 1).11

2.1. High-Throughput Synthesis

The first multiautoclave designs consisted of a metal block
containing Teflon-lined cylindrical chambers presenting diverse
volumes, mostly between ∼0.5−1 mL (see Figure 2A).6,7,12,13

We developed a multiautoclave for an in-house HT robotic
system (see Figure 2B), based on 15 individual portable Teflon
vessels with intermediate volumes of ∼1−2 mL.14 This feature
was an important breakthrough in the design of multiautoclaves
for zeolites because it allowed precise weight control during the
entire gel preparation process. Modern multiautoclave designs
also permit the in situ filtration of the gels by connecting the
vessels to a sealed, vacuum-pumped chamber.15,16

In general, the manufacture of fully automated devices for HT
zeolite synthesis is restricted to large HT technology producers
(e.g., Unchained Laboratories, Avantium, HTE, Bosch, Chem-
speed, and Zinsser), who can integrate robotics, engineering,
and data management into customer-tailored commercial
instruments. Unlike simpler multiautoclave reactors, these
highly modular systems integrate liquid/powder dosing,

Figure 1. High-throughput discovery workflow for the synthesis of
microporous materials.
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stirring/mixing, milling/grinding, pH control, heating/cooling,
among other requirements that can be included depending on
the customer necessities. Several years ago, we developed an in-
house automated system for zeolite synthesis at the ITQ (see
Figure 2B), composed of a robotic arm that handled the vials, a
liquid/solid dosing station, and a stirring/evaporation station.14

Seven calibrated syringe pumps allowed precise liquid dosing,
while the accurate control of the liquid/solid additions and
liquid evaporations was accomplished through analytical
balance measurements.

2.2. High-Throughput Characterization

HT zeolite synthesis requires concomitant topological, textural,
and/or chemical analysis to be performed at commensurate time

scales to avoiding workflow bottlenecks. Powder X-ray
diffraction (PXRD) is the most common technique to identify
crystalline microporous structures. Commercial vendors tackled
automated collection of multiple PXRD patterns from large
sample libraries by incorporating flat stages that could be moved
in all directions (XYZ-stages, see Figure 2C). Gas sorption to
probe zeolite porosity also required unique adaptation for HT
analysis because these measurements may last several hours. In
order to circumvent this bottleneck, a system for screening the
porosity of large number of microporous materials was
developed using the heat generated during gas adsorption for
quantification.17 Other characterization techniques, such as X-
ray fluorescence (XRF),18 IR spectroscopy combined with the
adsorption/desorption of probe molecules,19 and temperature-

Figure 2. Images of the SINTEF multiautoclave (A), the in-house developed system for hydrothermal synthesis of zeolites built at ITQ (B), and a
multisample preparation over an XYZ-stage in a PANalytical diffractometer at ITQ (C). Reproduced with permission from refs 6 and 14. Copyright
1998 and 2005 Wiley and Elsevier, respectively.

Figure 3. (A,B) Factorial-based designs proposed for HT synthesis of zeolites by Akporiaye et al. and Corma et al., respectively. Reproduced with
permission from refs 6 and 14. Copyright 1998 and 2005 Wiley and Elsevier, respectively. (C) Statistical evaluation of the influence of different
variables in HT zeolite synthesis. Reproduced with permission from ref 21. Copyright 2008 Elsevier. (D) 3-D representation of the influence of
different variables on the crystallinity of ITQ-30. Reproduced with permission from ref 22. Copyright 2006 Elsevier.
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programmed desorption (TPD),20 have also been adapted for
HT systems.

2.3. Data-Mining Techniques

The development of the first automated HT zeolite synthesis
systems drastically increased the number of experiments that
could be performed in parallel and, consequently, increased the
number of variables that could be explored simultaneously (see
Figure 3).6,13,14 Accordingly, data-mining techniques begun
their development almost simultaneously with HT synthesis as a
means to aid in the exploration of broad synthesis spaces
through careful design of experiments (DoE) and to analyze the
large quantities of data generated by these experiments (see
Figure 1).
2.3.1. Design of Experiments (DoE). In HT zeolite

synthesis, selecting which variables to investigate during the
initial DoE is a very challenging task because the effects that
individual variables have on nucleation/crystallization mecha-
nisms are highly intercorrelated. The first DoE for early HT
zeolite synthesis campaigns were based almost exclusively on
classic exploratory factorial designs.6,13,14 These designs involve
generating possible combinations of two or more variables,
which present different levels or values. Full factorial designs
allowed one to explore the effect of each synthesis variable on
zeolite crystallization as well as the influence of interconnected
variables (see Figure 3A).6 We systematically studied the system
TEA:SiO2:Na2O:Al2O3:H2O by HT methods, where TEA is
tetraethylammonium, in order to synthesize the Beta zeolite
with high yields while using a lowOSDA content in the synthesis
gel.14 Following a full-factorial design (see Figure 3B), a high-
silica Beta with low OSDA contents (TEA/Si ∼ 0.27) and
excellent crystallinity was obtained when using concentrated
synthesis gels (e.g., H2O/Si ∼ 5). The factorial design approach
has also yielded new zeolite structures. For instance, researchers
at UOP systematically explored simple mixtures of tetramethyl
and tetraethylammonium OSDAs, ultimately discovering
conditions that crystallized UZM-4 (12 × 8-rings) and UZM-
5 (8 × 8-rings).9

In this respect, our group initiated some of the first efforts to
incorporate simple statistics to properly evaluate the impact of
the different synthesis variables during HT synthesis processes.
Our objective was to direct the synthesis conditions more
effectively in the second generation of experiments.
The discovery of ITQ-33 started by performing a very large

initial factorial design (3 × 43) to explore unusual synthesis
conditions using flexible OSDA molecules (e.g., hexametho-
nium).10,21 The initial proposed conditions totaled 192
experiments, spanning the following precursor ranges: Si/Ge
∼ 2−30, B/(Si+Ge) ∼ 0−0.05, OH/(Si+Ge) ∼ 0.1−0.5, and
H2O/(Si+Ge) ∼ 5−30. This campaign resulted in some phase-
pure zeolites and several multiphase mixtures, one of which
contained an unknown phase that was named ITQ-33. The
results were subjected to Pareto analysis in order to plan a
second generation of experiments aimed at isolating ITQ-33.21

The Pareto analysis showed that ITQ-33 wasmost influenced by
Si/Ge and OH/(Si + Ge) (see Figure 3C). In light of these
findings, a second set of 18 experiments was proposed that
yielded phase-pure ITQ-33, a unique extra-large pore zeolite
interconnected bidirectionally with 10-ring channels exhibiting
remarkable selectivity to diesel and propylene in the cracking of
vacuum gasoil.10,21

In a similar way, the discovery of ITQ-30, a zeolite with
excellent catalytic performance for the alkylation of benzene

with propylene to produce cumene, involved studying the
directing role of the rigid and bulky N-methyl-sparteinium
OSDA across 144 experiments spanning a broad range of
synthesis conditions.22 These experiments generated ITQ-21 (a
large-pore zeolite) and an unknown phase named ITQ-30.
Further statistical analysis revealed that the crystallization of
ITQ-30 was negatively influenced by increasing water and Al
contents, regardless the Si/Ge ratio (see Figure 3D).
Accordingly, the next generation of experiments afforded the
crystallization phase-pure ITQ-30 zeolite under Ge-free
conditions.22

Advanced methods, including artificial neural networks
(ANNs) and genetic algorithms (GAs), are necessary for cases
in which simple statistics cannot effectively guide experimental
design.14,23 ANNs are nonlinear systems that can model
complex multidimensional studies through nodes with con-
nections reminiscent of those found in a biological brain (see
Figure 4A). GAs operate with similar mechanisms to those

behind Darwinian evolution, where the best variables dominate
the next generation population by selecting the proper operators
(e.g., selection, crossover, and mutation). As a standout
example, we combined ANNs and GAs to improve the catalytic
behavior of Ti-silicates for the selective epoxidation of olefins.23

Specifically, we used ANNs to predict the internal relationships
between different synthesis variables after being properly trained
with previous data, and then used GAs to optimize the next
generation of material synthesis experiments considering the
knowledge extracted by the ANN. Different synthesis variables

Figure 4. (A) Scheme of a neural network employed for modeling the
data set obtained during the HT synthesis study for Beta zeolite.
Reproduced with permission from ref 14. Copyright 2005 Elsevier. (B)
Evolution of the catalytic activity for the epoxidation reaction after three
evolved generations. Reproduced with permission from ref 23.
Copyright 2005 Elsevier.
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were considered (e.g., surfactant, organic modifier, OH or
titanium contents). Three generations of 38 samples were
synthesized using the NN-GA optimization process, achieving
an outstanding improvement of both catalytic activity and
epoxide selectivity each generation (see Figure 4B). The
improved catalytic behavior was found when decreasing the
amount of the organic modifier while keeping the OH/Si molar
ratio at ∼0.2.23
2.3.2. Data Extraction andClassification.Data extraction

and classification from HT experiments can become a major
bottleneck if not managed properly. For this reason, significant
efforts have been dedicated to develop nonsupervised data
analysis tools with the aim of generating new data-mining
mapping/exploration methods that allow facile and rapid data
extraction and visualization.
2.3.2.1. Clustering Using k-Means and Principal Compo-

nent Analysis (PCA). Clustering analyses of raw PXRD data
permits nonsupervised classification of crystalline materials into
diverse groups based on similarities in the diffraction patterns.
This technique is particularly useful for discriminating and
identifying pure phases in mixed systems. By considering the
PXRD patterns as structural vectors, the classification or
clustering of the achieved solids can be carried out by applying
statistical tools, such as k-means clustering and PCA.
The k-means clustering algorithm assigns n samples into k

clusters with the nearest mean (a value which is updated every
time a new component is added to the cluster), and this process
is repeated until all components are classified into different
clusters. We utilized the k-means clustering algorithm for
classifying HT synthesis raw data, by selecting all the PXRD
patterns obtained from the 144 syntheses carried out during the
ITQ-21/ITQ-30 synthesis campaign described in the previous
section (see Figure 5A).11 The k-clustering analysis binned the
raw PXRD data results into three well-defined clusters:
amorphous (cluster 1), ITQ-21 (cluster 2), and ITQ-30 (cluster
3) (see Figure 5B). Interestingly, the overall match between real
phases and the proposed clusters following the k-means analysis
was ∼90%, demonstrating the high potential of this tool.
The PCA uses statistical methods to reduce the information

contained within a long descriptor (e.g., an individual PXRD
pattern containing all the diffraction intensities) into three
structural principal components (SPCs) while conserving all the
information from the original data. We applied the PCA analyses
to the data from the same ITQ-21/ITQ-30 synthesis
campaign,11 achieving a dimensional reduction to just three
components for each PXRD pattern, ultimately providing a very
simple 3-D cluster visualization (see Figure 5C) that allowed us
to correlate the SPC projections with the crystallinity and
chemical composition of each synthesized material.
2.3.2.2. Adaptable TimeWarping (ATW)Models.Our group

has developed protocols to extract and predict structural
parameters of synthesized materials in order to classify and
relate structural features to synthesis variables.24,25 For example,
a common issue in the analysis of diffraction data is that the
PXRD pattern of a specific crystalline structure can present large
differences, both in peak intensity and 2θ shifts, depending on its
crystal size or chemical composition. This complicates non-
supervised structural recognition, particularly when mixed
phases are present. Our ATM algorithm allows searching
distances to detect 2θ shifts between the input and the reference
pattern instead of comparing the value of the input pattern at a
specific 2θ angle with a reference at the same 2θ angle (see
Figure 6A).24,25 The method was successfully validated when

the diffraction patterns for eight different crystalline zeolites
were correctly identified with a classification error of <3% from
the complex diffractograms of the mixed solids (see Figure
6B).24,25

Figure 5. (A) Phase diagram achieved when varying multiple variables
using methyl-sparteine as OSDA. (B) Clusters achieved when applying
the k-clustering analysis to the raw PXRD data results of the ITQ-21/
ITQ-30 study (note that the 2θ angle section comprised between 24.5
and 27.5° is presented). (C) Simple 3-D zeolite cluster representation
achieved by the statistical dimensional reduction of the entire PXRD
patterns to just three interrelated variables using principal component
analysis (PCA). Reproduced with permission from ref 11. Copyright
2006 American Chemical Society.
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3. COMPUTATIONAL METHODS AND MACHINE
LEARNING TECHNIQUES FOR ZEOLITE SYNTHESIS

Modern zeolite synthesis requires close integration between
experiments and computation to gain insight into the
fundamental underpinnings linking structure and property to
the synthesis recipe. Computational methods, including
molecular dynamics simulations, electronic structure calcu-
lations using first-principles, Monte Carlo techniques, and
continuum macroscopic approaches, have been developed
hand-in-hand with experimental methodologies to understand
the assembly of microporous materials.26 Theoretical simu-
lations can in principle require less time compared to
experimental measurements, thereby accelerating the discovery
of new materials, reducing both time and cost expenditures.
However, unlike well-established HT experimental protocols,
most computational techniques used to date cannot be
implemented in a HT manner without jeopardizing accuracy
given the need to use expensive high-level quantum chemistry
methods to correctly calculate the complex energy landscape of
hydrothermal crystallization processes. In this respect, the use of
ML algorithms offers an attractive avenue to accelerate the
discovery and optimization of molecular sieve synthesis by
bypassing the need for resource-intensive simulations and
instead use learned patterns from training examples to estimate
properties or predict outcomes under unexplored conditions. In
the next section we present some of our efforts toward the

development of computational tools for enabling the use of ML
for zeolite synthesis.

3.1. Hypothetical Structures and Phase Identification

To date, approximately 240 distinct zeolite structures have been
successfully synthesized, which is in stark contrast to themillions
of hypothetical structures generated using mathematical
constructs. Hypothetical zeolites have been generated using
symmetry-constrained geometric linkage of subunits, tiling
theory, and genetic algorithms coupled with bonding rules and
lattice energy minimization programs to downselect chemically
feasible structures.27,28 Deem and co-workers used Monte Carlo
simulations coupled with interatomic potential refinement to
investigate the arrangement of Si atom positions, unit cells, space
groups, and framework densities in porous materials, generating
over 2.6 million predicted zeolite-like materials.29 Since then,
the chemical feasibility of these hypothetically structures has
been evaluated by various groups using more complex methods,
including local interatomic distances (LIDs), TTT angles,
minimum 5th neighbor distance, average tetrahedral order
parameter, and pore dimensionality to further refine the
subgroup of synthetically accessible materials.30,31

Evidently, these hypothetical structures can be used to
identify new zeolites synthesized in the laboratory. For instance,
when we obtained the structure of ITQ-51 (see Figure 7A), an
extra-large pore zeolite with 16-rings synthesized using bulky
proton sponges as OSDAs, we realized that the structure was
included in Deem’s database as a pure-silica analogue.32 This

Figure 6. (A) ATW approach applied to powder X-ray diffractograms, which allows excellent identification accuracies even when peak intensity and 2θ
shifts are present (see inset). (B) Automatic analysis of a PXRD data set achieved using hexamethonium as OSDA to identify the different
crystallographic phases. Reproduced with permission from refs 24 and 25. Copyright 2009 and 2008 Wiley and RSC, respectively.

Figure 7. Zeolite structures of the ITQ-51 (A), the hypothetical T18MR (B), and ITQ-43 (C). Reproduced with permission from refs 32 and 33.
Copyright 2013 and 2011 National Academy of Sciences and AAAS, respectively.
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encouraged us to explore analogous structures, an exercise that
revealed extensive similarities between ITQ-51 and AlPO-31.
Using this information, we surmised that if the 4-rings forming
the 12-ring channel in AlPO-31 were substituted by six helical 4-
ring chains, a hypothetical 18-ring zeolite (denoted as T18MR,
see Figure 7B) would be formed.32 This approach was extended
to generate three additional hypothetical large-pore structures
that are currently important synthetic targets in our laboratory.
Hypothetical zeolite construction is also a powerful tool when

used to narrow down the structural space for unknown, highly
complex crystals for which limited available characterization
data is available. ITQ-43 is a hierarchical zeolite featuring a very
open structure (11.4 T atoms/1000 Å3) and cloverleaf-like
channels formed by 28-rings (see Figure 7C).33 When we first
synthesized ITQ-43, we knew from PXRD data that the crystal
structure was built either by C222, Cmm2, Cm2m, C2mm, or
Cmmm space groups. However, due to its large cell parameters
and low stability in its calcined form, we could not extract
reliable structural information from either diffraction or high
resolution transmission electron microscopy data. With limited
characterization data, we relied on an in-house simulation
program to generate a feasible set of potential structural
candidates.33,34 More specifically, we developed an evolutionary
algorithm deployed using GPU hardware that independently
manipulated fixed arrays of variables corresponding to atoms
coordinates belonging to the asymmetric unit cell. By using
suitable fitness evaluation and optimization criteria we
generated the 50 most viable structures. The resolved crystal
structure of ITQ-43 was shown to be one of these predicted
structures, thereby demonstrating the usefulness of hypothetical
structures generated through experimentally imposed con-
strains.
In a very elegant attempt to predict the synthesis of

hypothetical zeolites, Yu and co-workers have described a
multidatabase, Zeobank, containing synthesis conditions,
known structures, and hypothetical structures to perform
computational-guided studies between synthetic parameters
and zeolite structures.35−37 Different data-mining techniques, as
support vector machines (SVM) and neural networks (NN),
were investigated for correlating experimental conditions and
crystalline products.

3.2. OSDA-Zeolite Prediction

For zeolites, we now understand that coupled thermodynamic
and kinetic factors, mainly in the form of weak van der Waals
interactions between OSDAs and inorganic moieties that
influence nucleation events, are responsible for determining
the synthesis product. Accurately capturing the fine interplay
between organic and inorganic species at the molecular level
necessitates the development of the appropriate computational
tools.
Inspired by the work of Catlow and Jackson,38 we usedMonte

Carlo and energy minimization molecular dynamics simulations
to rationalize the effect of OSDA stabilization on the zeolite
structure.39,40 Specifically, by explicitly including the OSDA−
OSDA and OSDA−zeolite interactions in the potential energy
function, we established a simple, yet powerful framework to
approximate the energy change of the system upon OSDA
incorporation. This approach allowed us to isolate one product
out of two closely related zeolite structures, namely, ITQ-7 and
ITQ-17, by identifying an optimal OSDA out of several
structurally similar azocompounds.39 We used similar molecular
simulations to predict an optimal OSDA to synthesize phase

pure Ti-containing BEC zeolite.40 Notably, the generality of the
approach was demonstrated when a commercial tert-butyl-
iminotris(dimethylamino)phosphorane OSDA was identified
among multiple phosphazenes to stabilize the structure of the
elusive boggsite zeolite, enabling, for the first time, the synthesis
of a molecular sieve that had only been obtained as a naturally
occurring mineral.41

These results suggest that these computational methods allow
the a priori prediction of an OSDA molecule to synthesize a
desired framework. However, a major shortcoming of this
approach is that molecules used in the calculation could be
difficult to synthesize. A computational method to predict
chemically synthesizable OSDAs for crystalline molecular sieves
was reported by Deem et al., wherein transformations from
organic chemistry were applied to a library of available reagents
to generate molecules that were scored based on rigidity,
volume, stability under synthesis conditions, and energy of
interaction with the zeolite.42 Davis et al. validated the method
experimentally by successfully synthesizing the SFW zeolite43

and the enantioenriched polycrystalline STW zeolite (see Figure
8).44,45

The time requirement to perform accurate molecular
dynamics simulations is inextricably correlated with computing
power and availability. For example, when predicting the
suitability of a molecule to serve as an OSDA for a target
zeolite, calculating the stabilization energy within the framework
is one of the most intensive computational steps, requiring
several hours of CPU time. Comparatively, trained ML
algorithms are inherently more efficient and less computation-
ally intensive, making them ideally suited to replace computa-
tionally expensive molecular dynamics evaluations of the
stabilization energy of the OSDA inside zeolites. Deem et al.
used a data set of 4781 OSDA stabilization energies previously
computed for the BEA zeolite to train a NN on the molecular
structure descriptors of OSDAs to forecast their stabilization
energies.46 Notably, the trained network was able to predict
stabilization energies for new putative molecules with
comparable accuracy to that obtained with molecular dynamics
simulations, generating a list of new, chemically synthesizable
molecules that could be used to crystallize the elusive
polymorph A of BEA.
This approach could be applied to an even more ambitious

goal: the synthesis of custom-designed zeolites that are tailored
for specific applications. We recently demonstrated a new
concept in which a zeolite is prepared using OSDAs that mimic
the transition state (TS) of preestablished reactions, resulting in
drastically enhanced reaction rates and selectivities.47−49 The

Figure 8. Representation of the OSDA−zeolite interaction for the
synthesis of a chiral zeolite. Reproduced with permission from ref 45.
Copyright 2017 National Academy of Sciences.
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idea of imprinting a TS within a rigid crystalline structure
represents a disruptive departure from traditional catalysis and
provides exciting opportunities for designing more selective,
active, and responsive solids that can be further extended with
the help of ML.
3.3. Literature Data Extraction

The full-scale implementation of ML techniques for zeolite
synthesis is hindered by the challenges associated with data
sparsity and scarcity. Indeed, open-access data sets and synthesis
protocols for zeolites are smaller and more diverse compared to
other efforts like the Materials Genome Initiative. Low
availability of materials data causes underfitting and large
prediction bias in ML models,50 and these shortcomings can be
further exacerbated if negative examples are not included. In this
respect, the prolific peer-reviewed manuscript and patent
literature for zeolite synthesis offers a vast amount of data
collected over a span of six decades. However, collecting the
relevant data from tables, figures, and experimental sections of
thousands of documents is an impossible task without
automation. Leveraging recent advances in natural language
processing and text markup parsing tools, we recently developed
a tool in collaboration with Olivetti and co-workers to
automatically extract synthesis information and trends from
zeolite journal articles (see Figure 9).51 Specifically, our pipeline

automatically located, extracted, and organized zeolite synthesis
data from both the tables and main text of thousands of articles.
We validated the accuracy of the extracted data using a subset of
articles related to the preparation of germanium-containing
zeolites for which the pipeline accurately identified the complex
relationships between the synthesis parameters and resulting
topology. We envision that, with future improvements and small
changes in data engineering, this tool can be used to solve several
other research questions in zeolite synthesis chemistry.

4. FRONTIERS OF ML FOR ZEOLITE SYNTHESIS
The main challenge in zeolite synthesis is the incomplete
understanding of themolecular-level interactions and the kinetic
and thermodynamic driving forces that govern the adsorption
and binding specificity of OSDAs to precursors leading to
specific nucleation/crystallization events. A fundamental under-

standing of these processes and the ability to a priori control
crystallization requires synergistic research efforts to probe
atomic to macroscopic length scales. The complex and
multidimensional space of zeolite synthesis requires drawing
inferences from incomplete and imperfect information, for
which ML methods are very well-suited to replace the intuition-
based, trial-and-error approaches traditionally used to guide
experimentation.
We showed how databases of hypothetical zeolites can play an

important role in zeolite discovery. However, the standard
representation of crystal structures has been optimized for
human learning, which might not necessarily be optimal for ML.
We need to develop improved descriptors that can capture the
properties we intend to model in more effective ways. Thus,
developing “ML-friendly” representations of crystal structures
that are easily transferable across methods is essential for
reaching the level of predictive sophistication we have acquired
in molecular systems. In organic synthesis, NN have been used
to create fingerprints or molecular fragments for molecules in
reactions, leading to improved prediction capabilities.52 The
field of zeolite crystallization could benefit tremendously from
developing new approaches to define more efficient nomencla-
ture and structural representations.
Undoubtedly, newML approaches will play an important role

for enabling the computer-assisted synthesis of organic
molecules that could replace expensive OSDAs for known
zeolites or predict the structure of molecules leading to new
topologies. Recent work using ML to predict the stabilization
energies of chemically synthesizable OSDAs with an accuracy
commensurate to that of high-level molecular dynamic
simulations is a true testament of the versatility of these
algorithms. Future directions should leverage current efforts in
ML-based automated organic molecule retrosynthesis,53 includ-
ing the unsupervised selection of reaction conditions,54 catalysts,
and reagents, to deploy AI-driven experimental platforms
including full automation for highly parallelized OSDA
synthesis. OSDA design could benefit from cutting-edge
algorithms, such as generative adversarial networks and
reinforcement learning already used in the design of biological
compounds, in which new molecules with specific physico-
chemical features are produced using a punishment/reward
system analogous to that in psychological conditioning.55

Further, given the limited amount of data compared to other
fields, ML tools applied to zeolite synthesis will benefit from
cutting-edge approaches in meta-learning, including neural
Turing machines,56 and imitation learning.57

Naturally, the efficacy of ML schemes hinges on both the
quality and amount of data used to train the algorithms. We
showed the tremendous advantages of natural language parsing
tools capable of accessing the vast amount of experimental data
published in patents and journal articles in an automated
fashion. Future efforts should focus on developing improvedML
and visual recognition AI algorithms used in face-recognition
and self-driving vehicles to extract and classify data from figures
(including diffractograms and spectrograms) in addition to
written records, journal articles, patents, laboratory notebooks,
and internal databases. In many cases, however, data is collected
and stored in many disjoint formats without having validation or
standardized metadata. It is essential that we, as a community,
create and adopt robust standardization protocols to make data/
metadata accessible in a computer-readable form akin to those
implemented in parallel fields, while also allowing for easily
implementing changes as the data are updated or corrected.58

Figure 9. Scheme of the methodology employed for zeolite literature
extraction from multiple aspects of a journal article (i.e., text and table
data), modeling, and structure prediction (i.e., zeolite framework
densities). Reproduced with permission from ref 51. Copyright 2019
American Chemical Society.

Accounts of Chemical Research Article

DOI: 10.1021/acs.accounts.9b00399
Acc. Chem. Res. 2019, 52, 2971−2980

2978

http://dx.doi.org/10.1021/acs.accounts.9b00399


The growth of ML tools used for zeolite design is exciting, but
they cannot be used yet as a “silver-bullet” for solving all open
questions in the field. It is imperative that we understand the
limitations of ML tools so that we can help them learn properly.
We should keep in mind that predictive models developed by
ML tools might not be interpretable to humans, given that the
wayMLmodels represent knowledge rarely mirrors that used by
scientists. Therefore, as we embrace the ML-based design, we
have to continue working on representing data in a manner that
optimizes the way that humans and machines learn from each
other.
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(22) Corma, A.; Díaz-Cabañas, M. J.; Moliner, M.; Martínez, C.
Discovery of a new catalytically active and selective zeolite (ITQ-30) by
high-throughput synthesis techniques. J. Catal. 2006, 241, 312−318.
(23) Corma, A.; Serra, J. M.; Serna, P.; Valero, S.; Argente, E.; Botti, V.
Optimisation of olefin epoxidation catalysts with the application of
high-throughput and genetic algorithms assisted by artificial neural
networks (softcomputing techniques). J. Catal. 2005, 229, 513−524.
(24) Baumes, L. A.; Moliner, M.; Corma, A. Design of a Full-Profile-
Matching Solution for High-Throughput Analysis of Multiphase

Accounts of Chemical Research Article

DOI: 10.1021/acs.accounts.9b00399
Acc. Chem. Res. 2019, 52, 2971−2980

2979

mailto:acorma@itq.upv.es
http://orcid.org/0000-0002-5440-716X
http://orcid.org/0000-0002-0025-4233
http://orcid.org/0000-0002-2232-3527
http://dx.doi.org/10.1021/acs.accounts.9b00399


Samples Through Powder X-ray Diffraction. Chem. - Eur. J. 2009, 15,
4258−4269.
(25) Baumes, L. A.; Moliner, M.; Nicoloyannis, N.; Corma, A. A
reliable methodology for high throughput identification of a mixture of
crystallographic phases from powder X-ray diffraction data. CrystEng-
Comm 2008, 10, 1321−1324.
(26) Chen, L.; Deem,M.W. Strategies for high throughput, templated
zeolite synthesis. Mol. Phys. 2002, 100, 2175−2181.
(27) Treacy, M.; Rivin, I.; Balkovsky, E.; Randall, K.; Foster, M.
Enumeration of periodic tetrahedral frameworks. II. Polynodal graphs.
Microporous Mesoporous Mater. 2004, 74, 121−132.
(28)Woodley, S. M.; Catlow, R. Crystal structure prediction from first
principles. Nat. Mater. 2008, 7, 937−946.
(29) Pophale, R.; Cheeseman, P. A.; Deem, M. W. A database of new
zeolite-like materials. Phys. Chem. Chem. Phys. 2011, 13, 12407−12412.
(30) Li, Y.; Yu, J.; Xu, R. Criteria for zeolite frameworks realizable for
target synthesis. Angew. Chem., Int. Ed. 2013, 52, 1673−1677.
(31) Zimmermann, N.; Salcedo Perez, J. L.; Haranczyk, M. High-
Throughput Assessment of Hypothetical Zeolite Materials for Their
Synthesizability and Industrial Deployability. ChemRxiv, 2019.
(32)Martínez-Franco, R.;Moliner, M.; Yun, Y.; Sun, J.;Wan,W.; Zou,
X.; Corma, A. Synthesis of an extra-large molecular sieve using proton
sponges as organic structure-directing agents. Proc. Natl. Acad. Sci. U. S.
A. 2013, 110, 3749−3754.
(33) Jiang, J.; Jorda,́ J. L.; Yu, J.; Baumes, L. A.; Mugnaioli, E.; Diaz-
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Boronat, M.; Moliner, M.; Corma, A. Ab initio” synthesis of zeolites for
preestablished catalytic reactions. Science 2017, 355, 1051−1054.
(48) Li, C.; Paris, C.; Martínez-Triguero, J.; Boronat, M.; Moliner, M.;
Corma, A. Synthesis of reaction-adapted zeolites as methanol-to-olefins
catalysts with mimics of reaction intermediates as organic structure-
directing agents. Nat. Catal. 2018, 1, 547−554.
(49) Gallego, E. M.; Paris, C.; Cantín, A.; Moliner, M.; Corma, A.
Conceptual similarities between zeolites and artificial enzymes. Chem.
Sci. 2019, 10, 8009.
(50) Zhang, Y.; Ling, C. A strategy to apply machine learning to small
datasets in materials science. npj Comp. Mater. 2018, 4, 25.
(51) Jensen, Z.; Kim, E.; Kwon, S.; Gani, T. Z.; Roman-Leshkov, Y.;
Moliner, M.; Corma, A.; Olivetti, E. A Machine Learning Approach to
Zeolite Synthesis Enabled by Automatic Literature Data Extraction.
ACS Cent. Sci. 2019, 5, 892−899.
(52) Duvenaud, D.; Maclaurin, D.; Aguilera-Iparraguirre, J.; Goḿez-
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